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SECTION 1. INTRODUCTION

Electrical wiring systems are used extensively on spacecraft and satellites for power management and

distribution, control and command, and data transmission. The reliability of the wiring systems when

:ﬁcposed to the harsh environments of space is very critical to the success of the mission and the safety of
e CTew.

Failures in aerospace vehicles have been reported both on the ground and in flight due to arcing-and arc
propagation in the wiring harnesses. Arc tracking is the propagation of an arc along wiring bundles, and
is made possible by insulation degradation. Therefore, it is necessary to develop arc track resistant wiring
insulation in order to minimize, if not eliminate, the risk of failure of critical systems caused by electrical
shorts and arc propagation. The arc tracking failure mode represents a more severe risk to the aerospace
vehicle than a simple electrical short, due to the difficulty of fault detection, and the possibility of
“flashover" of the arc track to adjacent wires, leading to the possible loss of entire wiring harnesses.

A NASA Office of Safety and Mission Assurance (Code Q) program is currently underway to identify and
characterize wiring systems in terms of their potential use in aerospace vehicles. Electrical wiring designed
for power handling, management and distribution will be characterized in this program. Signal-level
cables and wires, which are intended for data transmission and communication, will be excluded because
these wire types handie lower power and voltage levels, and therefore are less susceptible to arc tracking.
The goal of this program is to provide the information and guidance needed to develop and qualify reliable,
safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power
applications. New guidelines will be issued once safe operating limits for these systems have been
established. This program is being performed by the Electrical Components and Systems Branch, Power
Technology Division, at the NASA Lewis Research Center (LeRC), and is managed by NASA LeRC
under the top level management of NASA Headquarters, Office of Safety and Mission Assurance,
Technical Standards Division (Code QW).

Extensive data already exists from testing performed in recent years on the characteristics of wiring
insulations, including the susceptibility to arc-tracking. Therefore, this program is intended to complete
the database of testing information on previously analyzed wire types, and consider new insulation
constructions and materials not previously evaluated. The wire types which are likely to perform best in
each of the different NASA environments will then be identified. The program is divided into three
technical tasks: identifying the NASA operational environments (Task #1), performing testing and
analysis (Task #2), and analyzing the wiring systems technology (Task #3).

The purpose of this report is to identify the environments which NASA spacecraft will operate, and to
determine the specific NASA testing data which needs to be gathered to verify the wiring insulations for
NASA use. This data will be valuable to spacecraft designers in determining the best wiring constructions
for the different NASA applications. This report contains the background information related to the
existence of previous spacecraft wiring failures, and other programs which have addressed the arc tracking
phenomenon (Section 2). The various types of insulation degradation which can lead to wiring failures are
discussed (Section 5). Then the operational environments which are encountered by spacecraft during
different NASA missions are introduced (Section 6), and the testing which needs to be performed to
address these conditions are outlined (Section 7). Finally, the testing plans and a summary of existing test
data are given in this report (Section 9: Appendix A). This report will be combined with the reports for
Task #2 and Task #3, when complete, to form the final program report.



SECTION 2. BACKGROUND
2.1 HISTORY

In the aerospace arena, wiring system failures have proven to be very costly in terms of loss of very
expensive equipment, imperilment of missions, and loss of lives. Often, a wiring system failure is not
simply the result of inadequate insulation, but it is due to a combination of wiring system factors. These
include mishandling of wiring insulation, system designs which expose wires to abnormal stresses, and
exposure to fluids which degrade the insulation. Some of the NASA missions with wiring system failures
are shown in Table 1.

Table 1. Space Missions with Wiring System Failures [1 - 10]

| Mission Canse Result
Gemini 8 Electrical Wiring Short Shortened Mission - Near Loss of Crew
Apollo 204 Damaged Insulation, Electrical Spark, 100% O, | Fire, 3 Astronauts Lost
Apollo 13 Damaged Insulation/Short Circuit/Flawed Design | Oxygen Tank Explosion, Mission Incomplete
STS -6 Abrasion of Insulation/Arc Tracking Wire Insulation Pyrolysis, 6 Conductors Melted
STS - 28 Arc Tracking Teleprinter Cable Insulation Pyrolysis
Magellan Wrong Wiring Connection, Wiring Short Wire Insulation Pyrolysis - Ground Processing
Spacelab Damaged Insulation/Arc Tracking Wiring Insulation Pyrolysis During Maintenance
Delta 178/GOES-G | Mechanical or Electrochemical Insulation Damage | Loss of Vehicle
STS48 Insulation Breakdown - Fluid Exposure SRB Fuel Isolation Valve Failure
ESA - Olympus Electrical Wiring Short Loss of Solar Array

Since the mid-sixties, polyimide (MIL-W-81381) has been the most common material used as wiring
insulation in aerospace applications due to its high dielectric strength, low weight, non-flammability, good
thermal properties, and high abrasion resistance. However, it has been reported that MIL-W-8 1381 may
undergo some degradation under certain operational environments [4,11-14]. This degradation can lead to
arc-tracking, which is the propagation of an arc along a wire. The Navy, which has had an extensive
failure history with polyimide wire and has investigated the use of polyimide wire in Naval aircraft
thorc;t;tgl[ﬂy at 31ts Naval Research Laboratory, has banned the use of polyimide wire (MIL-W-81381) in its
aircraft [11-13,15]. .

2.2 STATUS

NASA will engage in manned and unmanned space activities that will demand larger amounts of electrical
power over longer lifetimes than those of current spacecraft, increasing the likelihood of electrical failure.
Arc-tracking, which has often not been accounted for in the engineering design, can represent a serious
and potentially catastrophic event for aerospace vehicles, and testing to assess the susceptibility to arc
tracking is necessary. However, since arc initiation usually results from damage to the wiring insulation,
potential for arc tracking can be greatly reduced by implementing specific design features and correct
installation procedures. These include: (a) wire separation criteria, (b) physical barriers to arc propagation,
(c) advanced circuit protection devices, (d) wiring protection such as wraps and conduit, and (e) proper
handling and scheduled maintenance of the wiring systems. System redundancy is also an effective
method of ensuring that arc tracking in critical system does not result in a catastrophic failure. In the
absence of an electrical insulation which is perfect for every application, it is necessary to consider the
overall wiring system when dealing with spacecraft electrical systems. New technologies of fault detection
may improve the system safety and therefore need to be investigated.
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Recent programs and testing efforts have analyzed the insulation properties for aerospace applications,
including the arc-tracking phenomenon, for various insulation types. These programs included those of
the Air Force Wright Laboratory (WL) and McDonnell Aerospace Company (MDA) which tested "hybrid"
insulations for the aircraft environment, the Johnson Space Center (JSC) which have characterized
insulations for the Space Station and Space Shuttle programs, the Marshall Space Flight Center (MSFC)
which test insulations for various space environments, the Naval Research Laboratory which investigated
the properties of insulation hydrolysis, and the DuPont Corporation which has examined the properties of
various DuPont insulations. These programs and testing data focus primarily on experimental testing and
evaluation for a range of aircraft operational conditions, or a specific NASA application such as Space
Station Freedom or the Space Shuttle Program. This program will establish a comprehensive test matrix
and considering the testing performed previously by these groups, will conduct the additional testing
needed to evaluate the most promising insulation constructions for use in NASA applications.

2.3 PROGRAM PLAN

A workshop was held at the NASA Lewis Research Center in Cleveland, Ohio in July 1991 to address
issues and concerns about electrical wiring for aerospace applications. Scientist and engineers
representing several US federal agencies, national laboratories, academia, and private industry, exchanged
results and experiences in dealing with a variety of wiring insulation materials. A NASA Office of Safety
and Mission Quality (Code Q) program was then established to identify and characterize wiring systems in
terms of their potential use in acrospace vehicles.

2.3.1 QObjective

The goal of this program is to provide the information and guidance necessary to develop and qualify
reliable, safe, lightweight wiring systems, using new wiring insulation and constructions which are
resistant to arc tracking and suitable for use in space power applications.

2.3.2 Approach

The approach combines NASA LeRC in-house, other NASA centers, Department of Defense (DOD)
laboratories, and contracted efforts to achieve the objective. The program is divided into the following
tasks:

Task #1 NASA Operational Environments: The objective of this task is to identify operational

environments as relevant to electrical power wiring for a variety of NASA space missions
and vehicles, to evaluate the applicability of the findings of previous acrospace wiring test
programs to NASA missions, and to identify the additional testing necessary to identify the

best candidate insulation constructions for NASA applications.

Task #2

Wiring Construction Testing and Analysis: The objective of this task is to evaluate potential
insulation systems and to determine their suitability for use in NASA aerospace
environments.

Task #3 - Wiring Systems Technology: The objective of this task is to address safety and reliability
issues of complete wiring systems. This task will identify related technologies which have
an impact on prevention, detection, and isolation of wiring failure and system

reconfiguration following failure.

Task #4 Management Planning: The objective of this task is to plan, manage, and report on the

progress of this program.



SECTION 3. PURPOSE AND OVERVIEW

The purpose of the NASA wiring program is to identify and characterize wiring systems which enhance
the safety and reliability of aerospace vehicles. This information will provide the basis of new guidelines
for the wiring of NASA power systems. To facilitate the acceptance of these guidelines throughout the
aerospace community, the input of the various NASA centers and DOD laboratories, industry, and
academia has been solicited in the initial phases of the program, and a high level of involvement will
continue throughout the duration of the program.

The military has developed an extensive database of testing information for aircraft wiring systemns,
identifying potential materials and wiring constructions and their arc tracking behavior. However, the
NASA environments, and therefore the insulation requirements, may be significantly different than for
aircraft. These include wiring systems which must operate in Earth-orbiting satellites, inside pressurized
modules, on the lunar and martian surfaces, and in trans-atmospheric applications, such as the Space
Shuttle and other launch vehicles. The NASA program extends beyond the existing testing database for
wiring to completely address the effects of the NASA unique mission environments. The operational
environments for space missions, and the existing testing databases for wiring systems, are presented for
use by spacecraft design engineers.



SECTION 4. SCOPE

The scope of this program, and therefore this report, is limited to the electrical wiring of "conventional”
power systems. The electrical operating conditions of such systems are discussed in Section 6. Wiring
for applications other than power handling, such as for data transmission and communication, while not
required to meet the electrical requirements of power wiring, are still expected to be subject to the space
environments defined in this report. Wiring systems with extreme electrical requirements, such as lunar
surface transmission of power at very high voltages (kV's), are not considered to be within the scope of
this program. Additionally, other potential space operational conditions, such as the high temperature and
radiation environment in the close vicinity of a space nuclear reactor, are not included in this program.

In this report, the operational environments for aircraft and space missions are presented and discussed.
The classifications of NASA missions which are considered in this report are as discussed below:

a. Pressurized Module Environments: These include the manned environment of the space
shuttle, and the Space Station Freedom habitation and laboratory modules, which are
characterized by an enriched oxygen environment. The operational effects of launch/decent of
the pressurized modules are also included in this environment.

b. Low Earth Orbit/Geosynchronous Earth Orbit (LEO/GEO) Environments: These include the
LEO orbiting Space Station Freedom, and the many satellites (i.c. communications, remote
sensing) which are positioned throughout the LEO and GEO orbits. Again, the launch
operational effects are included in this case.

c. Trans-atmospheric Vehicle Environments: These include the operational environments of the
space shuttle (manned) and the expendable launch vehicles (unmanned) as they travel from the
Earth's surface to space. The operational temperature ranges (hot and cold) of the NASA
applications which are considered in this program will be given in Section 6. Extreme
temperatures outside of these ranges, such as engine heat during launch, friction upon vehicle
re-entry, or deep space, may require specialized insulations, and are beyond the scope of this

program.

d. Lunar and Martian Environments: Included will be permanent outposts on the lunar and
martian surfaces. Like the other cases, the operational effects of launch/descent will be
included in this environment.

The testing which was performed to verify the insulations for the aircraft environment are in many cases
sufficient for NASA missions as well. There are, however, environments which are unique to NASA
spacecraft. The testing required for wiring which will operate in each of the NASA application
environments, as compared to the testing already performed, will be outlined in Section 7.



SECTION 5. DEGRADATION AND FAILURE OF ELECTRICAL WIRING

INSULATION

This section discusses the various forms of wiring insulation degradation and failure modes which can
occur when the wiring is in operation on spacecraft. In Section 6, the environmental conditions which will
be encountered by NASA spacecraft will be introduced, and in Section 7, the testing which is needed to
evaluate wiring constructions for use on NASA spacecraft, when the environments, spacecraft design, and
mission operations are considered, will be determined. :

5.1 Insulation Degradation Types

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.1.6

Abrasion. Vibration and tight confinement can result in abrasion, causing wire damage during
flight and while servicing. The vibration during launch can result in abrasion damage to both the
launch vehicle and its spacecraft cargo [4,16]. While maintenance procedures can result in high
levels of insulation degradation as has been experienced on the Space Shuttle [9].

. Exposure to AO erodes certain insulation materials to the
point of causing a loss of mass, which results in a reduced insulation thickness and a change in
the functional properties [17]. Additionally, the synergistic effects of AO and UV radiation
exposure can be more extreme than either effect when considered separately [14].

Charged Plasma Effects In the GEO environment, a low-density, high energy charged
plasma can lead to differential charging of different spacecraft parts. At times of solar substorm
activity, the plasma interactions can be elevated to levels exceeding the breakdown voltages,
leading to and arc between spacecraft surfaces [18-20]. The Low Earth Orbits have a high-
density, low energy plasma. This type of plasma does not ordinarily lead to differential
charging, but to charging of the spacecraft surfaces with respect to the surrounding plasma. Arcs
in LEO occur from conductor-insulator junctions (including holes in wiring insulation) when the
conductor is highly negative when compared to the surrounding plasma [20]. It has also been
shown that the combined effect of debris impacts and the charged plasma environment can result
in the vaporization and ionization of material during the impact, and the initiation of an arc [21].
For wiring, the plasma environment would only be a factor for externally exposed wires

. The electrical breakdown of the insulations can result from corona,
which is the discharge of an electrical arc from the wire conductor to a point of lower potential,
either another conductor or simply the surrounding space. According to the Paschen
relationship, with increasing voltage the possibility of corona rises, with the inverse relationship
holding for pressure [16].

Electromagnetic Radiation. Electromagnetic radiation includes ultraviolet (UV) light, x-
rays, and gamma rays. Oxidation is the most severe damage due to UV radiation, but this will
only occur where oxygen is present, such as on the Earth's surface. However, UV radiation is
generally minor. Nonetheless, the UV radiation can cause insulation embrittlement as a result of
chain scission or cross-linking, reduce insulation mass, and also cause color changes [16,22].
Additionally, the synergistic effect of UV and AO exposure can cause even more scvere mass
loss [14].

Hxdrolysis. Hydrolysis is a degradation of the insulation material due to exposure to certain
fluids or moisture; it results in loss of strength, causes embrittlement, and makes the insulation
material susceptible to cracking. The hydrolytic reaction reduces the polymer chain length and
renders it weak and brittle, with a tendency to crack radially at sharp bends [4,17]. The exposure
of insulation to strong alkalis (high pH solutions) accelerates the rate of degradation from
negligibly small to unacceptable [17,23].
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5.1.7

5.1.8

5.1.9

5.1.10

. Cuts or notches in the insulation can be caused by a number of
mechanical stresses including vibration, maintenance procedures, and meteoroids and debris.
These can damage the insulation integrity, rendering the wires susceptible to arc initiation.
Meteoroids and debris impacting the surface of the wiring can create holes in the insulation, even
particles less than 1 mm in diameter may be damaging because of the frequency and velocity of
impact, while large pieces of debris could completely sever a wire [16].

. Outgassing occurs at low pressures or in a
vacuum, where molecules with relatively low weight fractions, unreacted additives,
contaminants, adsorbed (on surfaces) and absorbed (in bulk) gases, or moisture evaporate. The
loss of these additives and contaminants can change important properties of the insulation. For
example, the loss of a plasticizer by evaporation in a vacuum environment will produce a more
rigid or brittle material, with a corresponding decrease in elongation and increase in tensile and
flexure strength. Chemical changes may occur when water and gases gradually diffuse out of the
material, which can lead to the degradation of the wiring insulation [16].

jation. The particulate radiation environment is composed of cosmic rays,
Van Allen belt radiation, aurora particles, and solar flare particles. It consists of electrons,
protons, neutrons, alpha particles, and others. The damage is dependent upon the energy and
type of particles. Radiation damage such as removal of a bonded electron leading to bond
rupture, free radicals and discoloration can occur. The result can include the loss of mechanical
strength, an increase in vapor pressure and viscosity, and a reduction in molecular weight [16].

. Under normal gravity and atmospheric conditions, gasses can provide
cooling to an overheated or burning wire due to convection processes. However, in space, hot
gasses can remain stagnant in the area of the heat source. Because of the absence of most heat
transport systems, space wiring systems may be subjected to extreme high and low temperatures.
Short of direct thermal damage, the effects of aging may be accelerated under temperature
extremes. Elevated temperatures can cause damage such as softening, melting, and chemical
degomposition, while extremely cold temperatures can cause some insulations to become brittle
[16,24].

When exposed to thermal cycling, the cable conductors and insulations, which have different
coefficients of thermal expansion, will experience mechanical stress each thermal cycle.
Repeated tensile and compressive forces will react against the connector pins, assuming that the
connectors are restrained. Although small, the movement is cyclic and continuous for the life of
the cable insulation. Some polymers have a "memory" in that they tend to crease, stretch, or fold
in the same place once this action has occurred. Repeated creasing or stretching in the same place
will eventually lead to insulation failure [25]).

5.2 Insulation Failure Modes

5.2.1

Arc-Tracking. Arc tracking in electrical wire insulation has recently been identified as a failure
mode that can cause extensive damage to aircraft wire harnesses and possible secondary ignition
of other materials. Arc tracking occurs when an insulated wire sustains a propagating arc at a
certain current or voltage. An electrical arc can be produced due to a short circuit, overload
current, or localized stressing of the wiring systems. Wiring insulations can become susceptible
to electrical arc propagation when mechanical, chemical, or thermal damage has occurred (dry arc
tracking), or when a conductive fluid is present (wet arc tracking). Once initiated, the arc can
propagate along the wire or to adjacent wires (flashover) causing a circuit malfunction. The rate
and extent of arc tracking depends on the type of insulation material and construction, applied
power and frequency, wire gauge, and environmental factors, such as temperature, pressure, and
humidity. When relating voltage level to arc-tracking, tests have shown that in general the
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5.2.2

5.2.3

probability of arc-tracking becomes greater as the voltage level rises, with the exception of a
possible dip at intermediate voltages (120 to 160 Volts) [16,26].

In some cases, the conductive path of the carbon arc track displays a high enough resistance such
that the current is limited, and therefore may be difficult to detect using conventional circuit
protection. Tests at the NASA Johnson Space Center (JSC) have shown that for the space
shuttle power system, arc-tracking was limited to lengths of less than 1" up to 6" [17,25-28].
New fault detection technology may improve the detection of these faults.

Combustion. The combustion of materials which can result from an electrical arc is influenced
by the percent oxygen and pressure level in the area where the wire is operating. MIL-W-81381
was chosen because of its favorable properties, including being non-flammable. To be
considered for NASA applications, all of the insulation materials must also be non-flammable
[17,23]. An enriched oxygen concentration can increase flame-spread rate, and increase
extinguishment difficulty [24].

. An electrical short is the most common form of failure occurrence in
electrical wiring. Arc tracking (see above) is a secondary type of failure which can occur as a
result of a short circuit fault. Most short circuits result in extremely high currents, and are
interrupted by the protection systems. However, even momentary short circuits can result in
permanent insulation damage or the initiation of combustion. The extent of damage which occurs
as a result of a short circuit fault is dependent upon the circuit protection, wiring insulation, and
operational environment.



SECTION 6. OPERATIONAL ENVIRONMENTS OF WIRING SYSTEMS

The specific electrical, mechanical, and environmental conditions for the NASA missions and military
aircraft are given in Table 2, and discussion and references are provided in this section. The NASA
mission environments can then be compared to the aircraft environment (Section 7), for which testing has
already been performed in the WL testing program (Section 9). This comparison, combined with the
database of testing results which currently exists from other DOD and NASA programs (Section 9), will
yield the additional testing which needs to be performed in this program. The specific operational
conditions to be addressed, as defined in Section 4, consist of the NASA pressurized modules, low Earth
orbit (LEO) spacecraft, geosynchronous Earth orbit (GEO) spacecraft, trans-atmospheric vehicles, lunar
surface and Mars surface missions.

6.1 NASA Pressurized Module Operational Environments

6.1.1 Electrical. The space shuttle has a 28 VDC power system, supplied by 3 primary fuel cells
which can supply a total of 7 kW of steady state power to the payload and habitat region of the
vehicle [29-32]. ‘The original Space Station Freedom design had a total power requirement of 75
KW from four 18.75 kW solar modules. Presently the design requirement has been scaled back
to 56.25 kW due to the elimination of the fourth solar power module [33]. The distribution
voltage inside the Space Station Freedom pressurized modules, between the internal DC to DC
converter units and the loads is 120 VDC. At the loads the distribution voltage is 28 VDC [34].

6.1.2 Temperature. The interior temperature of the pressurized modules is to be regulated for
habitation by astronauts, these temperatures can range between 18.3°C and 26.7°C [35].
Because of the regulated temperature, thermal cycling is not a significant factor.

6.1.3 Atmospheric. In the NASA pressurized environments, the atmosphere will be nominally air
(21% oxygen, 101 kPa total pressure) enriched to 30% oxygen at 69 kPa total pressure for
prebreathing prior to an extravehicular activity [35,36].

6.1.4 Vibration. The only significant vibration which the pressurized environments will experience
are during launch, since very little vibration will occur while in orbit. The launch vibration
environment, depending upon the launch configuration, can approach values of acceleration as
high as 10g and frequencies approaching 1000 Hz [37].

For both the Space Shuttle and expendable launch vehicles, vibration induced from acoustic
fields may be an important factor. After ignition, the intensity of the acoustical fields from the
rocket engine exhaust increase until lift-off. As the launcher rises, the strength of the field
reflected from the ground decreases. The acoustic field experiences a second increase as the
vehicle approaches the speed of sound due to aerodynamic disturbances. A vibrational response
results, which can be many times larger than the structurally transmitted vibration. For typical
launch vehicles, the acoustic noise environment has a sound pressure level of 137 to 145dB as
shown in Figure 1 [16,37].

6.1.5 Meteoroid/Debris. Obviously, if space debris or a meteorite penetrates a pressurized module,
the damage caused to wiring insulation will be a trivial part of the overall hazard.

6.1.6 Gas/Fluid. For NASA pressurized modules, the relative humidity (RH) is not to exceed 70%
or fall below 25% [35]. Most NASA spacecraft will experience a worst case humidity
environment when being assembled, stored, and transported before launch, as the environment is
not always regulated, and can rise to the earth's humidity level of up to 100% [23]. While the
lgunch ;ehicles are on the launch pad, the payload environment is regulated to 50% RH or less
[3,15,29,38].
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Figure 1. Acoustic Environment of Payloads for Launch Systems [37]
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All wiring for space applications should be compatible with typical space fluids such as
hydrazine, hydraulic fluid, monomethythydrazine, nitrogen tetroxide, and ammonia as well as
others that may result in serious degradation of the wiring insulation.

6.1.7 Pressure. The pressurized modules are regulated at constant pressures of 69 to 101 kPa (10 -
14.7 psi, 517 - 760 Torr) [36].

6.1.8 Electromagnetic Radiation. The pressurized modules will shield the wiring from exposure
to the ultraviolet radiation of the space environment.

6.1.9 Particulate Radiation. The pressurized modules, as a basic requirement, must be radiation
resistant enough to enable human habitation. The resistance of electrical insulations to particulate
radiation will be better than that of humans or electronics [39].

6.1.10 Atomic Oxygen. Not Applicable.

6.1.11 Gravity. In LEO, the residual gravity is not zero, but ranges from < 10-g to 10-3g. While the
fundamental aerodynamic minimum level is 10g, the 10~g to 10-3g range will result due to
venting forces, station keeping thrusters, crew motion, and the gravity gradient [30]. The
payloads can also experience accelerations of up to 8g during launch [37].

6.1.12 Charged Plasma. All of the wires for the Space Station Freedom pressurized modules are
assumed to be inside of the pressurized environment, and therefore unexposed to the plasma.

6.2 NASA LEO/GEO Operational Environments

6.2.1 Electrical. In general, the vast majority of satellites built to date for both LEO and GEO have
power distribution at a potential of 28 VDC [34]. The power levels of present LEO and GEO
spacecraft range in power capability from a few Watts to a few kW. The highest flown to date
was Skylab, which had an average power level of 8 kW [40,41].



6.2.2 Temperature The temperature environment in LEO is extreme due to the contrast between Sun
exposure and Earth shadowing. This can range from -65°C to 120°C [25,36]. The frequency
which a satellite will experience an eclipse increases as the satellites altitude decreases, this is
shown in Figure 2. Typically, for a 550 km orbit, there will be about 15 eclipses per day,
resulting in 5500 thermal cycles per year [37].

Figure 2. [Earth Orbiting Satellite Eclipses [16]
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In GEO, the eclipse seasons are as shown in Figure 3. There are seasons of about 45 days,
twice per year, with a maximum shadow time of 1.2 hours per day. As a result, there will be 90
thermal cycles per year. The approximate temperature range of these cycles is expected to be
from -196°C to 128°C [37,42].

Figure 3. Eclipse Seasons in Geosynchronous Orbit [37]
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6.2.3

6.2.4
6.2.5

6.2.6
6.2.7

6.2.8

6.2.9

Atmospheric. The lack of significant oxygen or pressure makes a fire on orbit an impossibility
unless it occurs in the presence of oxygen such as inside a fuel cell oxygen tank [8].

Yijbration. See discussion for Pressurized Modules Section 6.1.4.

_ The LEO environment is more severe than the GEO environment, and can
result in an impact flux of 11 to 26 impacts/m?/year for particles of significant size [43]. Smaller
particles can be significant if there is a charged plasma environment because an arc can result, or
if the surface has important optical properties [21].

Gas/Fluid. See discussion for Pressurized Modules Section 6.1.6.

_The LEO environment will have pressures ranging from 10+ to 10-3 Pa (10 to 105
Torr) [19,44]. The GEO environment will have pressures which approach the interplanetary
value of 10-11 Pa (7.5 x10-4 Torr) [45].

Electromagnetic Radiation. The total energy received from the Sun per unit area at 1
Astronomical Unit (AU) is the solar constant, and it equals 1353 W/m? at air mass zero (AMO).
The region of the solar spectrum which contains 99.5 percent of the total energy is the region
from 0.12 pm to 10 pm, or the UV, visible, and IR bands as shown in Figure 4. The energy of
the radiation is inversely proportional to the wavelength, therefore the ultraviolet light is higher in
energy than the visible or infrared. The energy of the UV radiation can be high enough to cause
excitation, if not ionization, in some materials. Over the whole UV wavelength range, up to 400
nm, the intensity average is 118 W/m? [16].

Figure 4. Spectral Distribution of Sunlight [16]
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Other types of Electromagnetic radiation include x-rays and gamma rays having wavelengths of
approximately 108 cm. Although these types of radiation are high in energy, they are not found
in high enough levels to be a significant part of the natural radiation environment [16].

Particulate Radiation. Particulate solar radiation consists primarily of the protons and
electrons of the solar wind. These are trapped by the Earth's magnetic field forming the
Plasmasphere or the Van Allen radiation belts. The formation of the Earth radiation environment
is shown in Figure 5.



Figure 5. Earth Particulate Radiation Environment [16]
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The plasmasphere is divided into two zones, an area of mostly low energy electrons (20 keV to 1
MeV) and high energy protons (2600 MeV) extending from about 480 km to 6400 km above the
Earth, and an area consisting of very high energy electrons (20 keV to 5 MeV) with a small
number of low energy protons (~60 MeV) which extends from 16,000 to 58,000 km [16,22].

Solar flare particles, although sporadic, are considered a great radiation hazard, as they result in
proton and Alpha particle (He+) emissions of up to 100's of MeV's. Galactic radiation consists
of 85% protons, 14% Alpha particles, and 1% heavier atoms, and have very high energy
(>1000's MeV); however, the intensity of exposure is low (2.5 particles/cm?s) [16,22].

The Auroral radiation zone is located between approximately 60° and 65° geomagnetic latitude
and consists mostly of low energy (< 200 keV) electrons and some protons. These particles do
not represent a serious radiation problem [16].

The majority of radiation at synchronous orbit are solar flare protons, as opposed to particles
trapped by the Earth's magnetic field [16].

6.2.10 Atomic Oxygen. The wires may be exposed to an extreme atomic oxygen environment. On
average for low Earth orbits (400 - 500 km), the atomic oxygen exposure can range from 101 -
1012 atoms/m?® with an average atomic energy of 4.3 to 4.4 eV [43,46]. However, the level of
exposure is dependent on the solar activity as shown in Figure 6. This leads to an equivalent
fluence for testing of wiring insulation of 102 - 102 atoms/cm?/year [14,46].

6.2.11 Gravity. See discussion for Pressurized Modules Section 6.1.11.

6.2.12 Charged Plasma. The plasma environment for LEO has an jon density (positive or negative)
of 3x 10 to 9x 105 cm® depending upon the degree of solar activity and orbit position. The
thermal energies of the electrons and positive ions are in the range of 0.1 to 0.2 eV,
corresponding to temperatures of 1200 K to 2400 K. In general, the plasma in LEOQ is a high
density, low energy environment and can lead to arcing from exposed surfaces to the ambient
plasma [18-20,36].
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6.3
6.3.1

6.3.2

6.3.3

6.3.4
6.3.5

The GEO plasma environment is a low density, high energy plasma, and can result in significant
charging which can lead to arcing between spacecraft surfaces. The worst case geosynchronous
plasma environment, which should be used in predicting spacecraft potentials, are given by ion
and electron densities from 0.24 to 1.12 cm3 and thermal energies of 120 to 295 keV [18-20].

Figure 6. Atomic Oxygen Density Levels [47]
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Electrical. The space shuttle has a 28 VDC power system, supplied by 3 primary fuel cells,
while the power distribution systems for the expendable launch vehicles are from 28 to 270
VDC. The space shuttle's primary fuel cells can supply a total of 7 kW of steady state power to
the payload and habitat region of the vehicle [29-32].

Temperature. For the space shuttle, the temperature range is -156°C to 200°C, while for
expendable launch vehicles the range is -200°C to 260°C [3,29].

The launch vehicle will endure thermal cycling dependent upon its altitude and duration in orbit.
The space shuttle in LEO will endure frequent thermal cycling with great extremes (-65°C to
120°C); however, it is only in orbit for a few days at a time. An expendable launch vehicle is
only operational in orbit for a few minutes/hours, so thermal cycling is not a concern.
Atmospheric. See the discussion for the LEO/GEO environment (6.2.3), except for the
pressurized regions of the space shuttle, which are included in the Pressurized Module
discussion (6.1.3).

Vibration. See the discussion for Pressurized Modules Section 6.14.

Particle Impacts. See the discussion for LEO/GEO Section 6.2.5.
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6.3.6

6.3.7

6.3.8
6.3.9
6.3.10
6.3.11
6.3.12

Gas/Fluid. See discussion for Pressurized Modules Section 6.1.6. For the Space Shuttle, the
only areas with a controlled humidity environment are the payload bay and crew cabin. The
humidity is not controlled during the roll out from the KSC Vehicle Assembly Building to the
launch pad [23].

. The trans-atmospheric vehicle pressures will range from 101 kPa (760 Torr) at Sea
Level to 10! Pa (7.5 x 10 Torr) for interplanetary altitudes. Above 2500 km, the gas pressure
decreases exponentially with increasing altitude, and reaches the interplanetary value near 20,000
km. For the space shuttle, the pressure in the cargo bay is affected by the movement of the
shuttle. The pressure is nominally 10+ Pa (10 Torr) after the thrusters are fired for 1 second,
and reaching 4x 104 Pa (3x 10# Torr) after 1 minute of firing[19,45].

Electromagnetic Radiation. See discussion for LEO/GEO Section 6.2.8.
Particulate Radiation. See discussion for LEO/GEO Section 6.2.9.
Atomic Oxvgen. See discussion for LEO/GEO Section 6.2.10.
Gravity. See discussion for Pressurized Modules Section 6.1.11.
. The plasma environment of a launch vehicle is expected to range from a
non-plasma environment on earth, to that of the LEO and GEO environments. For a vehicle

traveling beyond a GEO orbit, the plasma environment in free space is approximated by that at
GEO [18,19].

6.4 NASA Lunar and Martian Surface Operational Environments

6.4.1

6.4.2

6.4.3
6.4.4
6.4.5

Electrical. When Lunar and Martian systems are developed, the baseline system will likely be
based on technology developed for Space Station and Space Shuttle programs. Electrical
distribution levels considered will range from 28 VDC to 160 VDC. High frequency AC power
distribution may also be considered, because of the expanding power requirements and utility
type system requirements [48]. Total power system requirements for permanently manned
outposts have been proposed ranging up to 150 kW for Mars and 725 kW for the Moon.
However, recent estimates for the Moon and Mars power requirements are 50 kW and 20 kW
respectively. Additionally, systems with even lower power levels have been proposed as a way
to reduce the mission costs [33,48-51].

Temperature. The surface temperature of the Moon, due to the lack of an atmosphere, varies
greatly during the day and night cycles. During the 364 hour lunar day, the temperature can rise
to 111°C, while during the equally long lunar night, the temperature can drop to -171°C. The
lunar day/night cycle of 28 days results in 13 cycles in 1 Earth year [45].

The existence of the thin Martian atmosphere, and the decreased solar intensity (590 W/m?) due
to the increased distance from the sun (1.5 AU), result in a smaller temperature range than on the
lunar surface. During the daytime, the temperature is a moderate 27°C, while at night, the
temperature can drop to -143°C. Similar to the lunar surface case, the Mars thermal cycles are
dependent upon the day/night cycles (12.3 hr day/12.3 hr night). Therefore, 356 cycles per
Earth year will occur [45,52].

Atmospheric. See discussion for LEO/GEO Section 6.2.3.
Vibration. See discussion for Pressurized Modules Section 6.1.4.

. The Moon is bombarded with meteoroids and micrometeoroids. These
micrometeoroids are the result of cometary debris, interstellar grains, and lunar ejecta. With no
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6.4.6

6.4.7

6.4.8

6.4.9

protection from an atmosphere, impact velocities range from 24 to 72 km/s. The actual hazard is
small for meteoroids with pit sizes approximately equal to 500 pm in diameter, which have an
impact rate between 0.01 to 0.5 impacts/m?/yr. Additionally, meteoroids of approximately 100
grams will have an impact rate of 1.2 x 10+ impacts/km?/yr, with larger meteoroids impacting at
even lower rates [45].

On Mars, due to the atmosphere, the probability of meteoroid impact is very low [52].

Gas/Fluid. See discussion for Pressurized Modules Section 6.1.6. Additionally, on Mars the
average amount of atmospheric water vapor is 0.03% by volume. The water vapor concentration
is closely linked to the temperature distribution; during most of the year and at most latitudes the
atmosphere holds all of the water possible (100% relative humidity) [45].

Build up of dust particles on lunar surface wiring is likely to occur due to surface activities.
Direct degradation of the insulation in contact with the lunar soil may not be an issue, but the
secondary effects of dust accumulation must be considered. Studies have estimated that a layer
of dust more than about 11 pm would not only effectively block thermal radiation, but it would
also limit all heat transfer to the insulation, due to the poor conductivity of the lunar soil [53].

Pressure. Due to the fact that there is no continuous “lower atmosphere”, the "upper
atmosphere" extends to the surface of the Moon and it is nearly a collisionless gas. The density
is approximately 2 x 10°. molecules/cm? at night corresponding to a pressure of 10-1° Pa (1012
Torr) [45,54].

The surface atmospheric pressure on Mars varies with the seasons, ranging from 600 to 1500 Pa
(4.4 to 11.3 Torr) [45].

Electromagnetic Radiation. When the lunar surface is exposed to the Sun, the solar flux is
1371 W/m2, due to the lack of significant atmosphere. The ultraviolet radiation exposure on the
lunar surface will be equal to 1 UV sun [45].

The solar radiation on the surface of Mars ranges from 590 W/m?, without forward scattering by
small particles in the Mars atmosphere, to 649 W/m?, if the scattering is taken into account
[43,45].

jon. The particulate radiation exposures on the lunar surface are shown in
Table 3. The solar wind consists mostly of H and He nuclei, and is the dominant source of the
lunar particulate radiation. Surface features exposed to the solar wind, with a velocity of
approximately 400 km/s, are gradually smoothed by a process known as sputtering. However,
this process poses little hazard to equipment on the surface, for example the erosion lifetime of a
rock with a diameter of only 10-6 m is estimated to be 10° years [45]. Solar cosmic rays are
ejected from the sun during solar flares, and are dominated by the nuclei of light atoms (H, He)
while heavier nuclei (Ca, Fe) also occur. These high energy particles can penetrate the lunar
surface materials to a depth of 1 cm [45). Galactic cosmic rays are charged particles from outside
the solar system, and are the most energetic particles to reach the lunar surface. They have lunar
penetration depths that exceed 1 m, but the flux rate is significantly lower than that of solar
cosmic rays [45].

Table 3. Lunar Particulate Radiation [45]

Source MeV/nucleon Proton Flux Penetration
(cm%sec™) Depth (cm)
Solar Wind 103 108 106
Solar Cosmic Rays 110 102 102 103w 1
Galactic Cosmic Rays 102 10 10¢ 1 10 10°
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6.4.10
6.4.11

6.4.12

On Mars, the atmosphere below 120 km is dominated by CO,. Just below 130 km, the ion
concentrations of O,* and CO,* are at their peak of 105 cm™ and a temperature of 150 K. At
altitudes of 225 km, O+ ions are at a peak of 10% cmr?, with a temperature of 210 K. Above this
altitude, departure from thermal equilibrium with the neutral gas occur, and the ion temperature
increases rapidly to over 1000 K [45].

Atomic Oxygen. Not Applicable.

Gravity. The gravity on the surface of the Moon, because it is less massive than the Earth, is
0.165 g or 162.3 cm/s2. On Mars the gravity is 0.38 g or 372.52 cmmy/s? [45].

. At the Moon, the solar wind plasma consists mostly of charged H and He
nuclei. Additionally, solar cosmic rays ejected from the sun during solar flares, and Galactic
cosmic rays, from the outside the solar system are present. These charged particles may cause
E):tentials to develop between the spacecraft and ground, resulting in electrostatic discharges

5].

The interaction of Mars with the solar wind is a cross between a magnetospheric interaction and
an atmospheric interaction [45].

6.5 Aircraft O ional Envi I

6.5.1

6.5.2

6.5.3

6.5.4

6.5.5

6.5.6

6.5.7

6.5.8
6.5.9

Electrical. The electrical power systems for military aircraft are primarily 28V with frequencies
from DC to 400 Hz [53].

Temperature. The properties of aircraft wiring have been analyzed in testing with temperatures
in the range of -65°C to 230°C [53].

Atmospheric. Military aircraft operate in the earth's atmosphere, where dry air has an oxygen
content of 20.95 % by volume on average [55].

Vibration. Acoustical vibration can result in aircraft because of jet wake and combustion
turbulence. This vibration can range up to 500 Hz and a maximum amplitude of approximately

25 um [16].
Particle Impacts. Not Applicable.

Gas/Fluid. A wide range of aerospace fluids need to be considered, including lubricating oil,
hydraulic fluid, dielectric coolant fluid, isopropyl alcohol, gasoline, and others [53].

. The aircraft pressures range from the sea level atmospheric pressure of 101 kPa (760
Torr) to 6.5 kPa (49 Torr), which simulates an environment of 18,000 m (60,000 feet) [531.

Electromagnetic Radiation. See discussion for Trans-atmospheric Vehicle Section 6.3.8.
Particulate Radiation. Not Applicable.

6.5.10 Atomic Oxvgen. Not Applicable.

6.5.11

Gravity. Not Applicable.

6.5.12 Charged Plasma. Not Applicable.
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SECTION 7. NASA TESTING REQUIREMENTS FOR
SPACECRAFT WIRING

The operational environments, combined with specific operational and design factors for the various
spacecraft, which can lead to additional degradation or provide built-in protection from the space
environments, determine the NASA testing requirements. Then by considering the testing which already
has been performed by NASA, the DOD and other agencies, the additional testing necessary to address the
NASA operational environments are given in this section.

7.1 NASA Spacecraft Design/Operational Factors

Along with the operational environments presented in Section 6, spacecraft are designed to reduce or
eliminate the exposure to certain environmental conditions. In most cases, this is because, depending on
mission length, none of the insulations used to date could survive full exposure to the space environment
without protection of some kind. Additionally, the mission of some NASA spacecraft lead to degradation
due to operations which are not addressed by strictly considering the environments, an example of this is
the space shuttle maintenance requirements. In this section, the spacecraft design and operational factors
which reduce the influence of space environments or give rise to additional degradation possibilities are

discussed.

7.1.1 Pressurized Modules. One area where the design of the pressurized modules may eliminate the
need for testing is in exposure to space fluids. The pressurized modules, as shown by current
designs for both the space shuttle and space station, will have a much more controlled
environment, fluid systems are designed to ensure that their fluids do not contact electrical power
wiring, and exposure inside the modules to launch vehicle fluids are unlikely [23]. Additionally,
the activity of the crew members, as well as any maintenance procedures, can lead to unacceptable
mechanical stresses on wiring insulations, accelerating the rate of degradation [23,33,40,49,50].

7.1.2 LEQ/GEQ. When considering the meteoroid and debris, atomic oxygen, and radiation
environment, system design must take into account the probability and criticality of a failure, and
then shield the insulation, or provide redundancy, to bring the hazard down to an acceptable level.
Many current and future satellites are expected to require operations beyond 10 years, all polymeric
materials will degrade rapidly in such environments, and they must be protected if significant
lifetime is required [23]. For LEO/GEO satellites, because they are generally autonomous and
unserviced, improper handling of insulation is only a concern before launch during assembly, test,
and launch procedures [23,33,40,49,50]. According to existing NASA recommendations,
elgtrical cables and wiring must be enclosed in a "faraday cage" for protection from the space
plasma [18].

7.1.3 Trans-atmospheric Vehicles. The operational environment for the trans-atmospheric vehicles
are in general the same as the LEO/GEO spacecraft, and ELV's have a relatively short mission life.
However, the space shuttle orbiters can sustain additional mechanical damage because of their
reusabilty and resultant continuous maintenance procedures. These lead to high levels of personnel
traffic in areas of limited working space, which in the past have resulted in insulation damage due
to extreme mechanical stresses [23,33,40,49,50]. This has resulted in redesigns to wiring
harnesses, rerouting, and additional physical protection for the wiring systems [9]. Any systems
with similar maintenance requirements should consider the problems associated with the space
shuttle wiring systems.

7.1.4 Lunar and Martian Surface Missions. Again, as in the LEO/GEO case, assuming a
significant lifetime is required, the system must be designed to alleviate the damage as a result of
meteoroids (Moon only), and radiation. The activity of the crew members, as well as any
maintenance procedures can lead to unacceptable mechanical stresses on wiring insulations,
accelerating the rate of degradation [23,33,40,49,50].
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72 C son of NASA Requi s to Existing Testing D

Many of the conditions outlined in Section 6 have been addressed previously in DOD and NASA testing
programs. In most cases, repetition of testing is not required or desired. This section will discuss the
areas where additional testing is not needed due to the existing database of testing information.

7.2.1 Existing Testing for Aircraft Environment The testing which has been performed for the
military aircraft in the DOD programs, as detailed in Section 9, also addresses many of the NASA
requirements for the testing of wiring insulations. These programs are sufficient to address the
NASA requirements in the following areas:

General Properties: This includes analysis of the wire thickness, workmanship, diameter,
and weight when compared to the wire specifications.

Electrical Properties: Including the requirements for corona inception and extinction,
impulse testing, insulation resistance, and dielectric strength under aircraft environmental
conditions (i.e. non-vacuum).

Mechanical Properties: Many mechanical tests have been performed to verify the insulations
resistance to abrasion, cut through, repeated flexing, notching, cold flow, wire to wire
abrasion, and crushing. The wires stiffness was also taken into account.

Environmental Properties: The resistance to hydrolysis as a result of exposure to humidity
(KSC salt fog environment), water, or alkaline cleaners meet the requirements of a NASA
system, since in general, the most severe humidity environment will be while on earth either
during storage or transport [13,23,53].

Certain space environments are also addressed by standard military wire ratings. For example,
wiring is rated for 100,000 hours at the maximum operating temperature, based on the rate that
insulations age when exposed to high temperatures. In general, space wiring systems will not be
exposed to temperatures higher than the wire rating [23). However, additional testing may be
required to address the effects of thermal cycling.
7.2.2 Existing Testing for NASA Environments. Other ongoing programs, such as the Space
Shuttle and Space Station programs, have performed testing which addresses many of the unique
NASA operational environments. These include enriched oxygen (30%) and vacuum
environmental testing. The testing relevant to this program is summarized in Section 9. This
testing will be leveraged whenever possible, and repeated tests will not be performed. In many
cases, since the insulations being considered are hybrid constructions, testing may have been
previously performed on wire constructions using the same materials present in these
constructions. Therefore, the general behavior may be known, however, certain tests may be
necessary to determine the comparative capabilities of each specific wire type.

73 Additional NASA Testing Requi "

By considering the NASA environments, the spacecraft design and operational factors, and the existing
database of testing, the additional testing required for NASA are determined. The tests to be performed,
the NASA missions which they address, the test conditions/parameters, test method, and rationale for
testing are given in Table 4. Table 5 outlines the matrix of testing which has been identified, indicating
where the NASA operational environments have been satisfied by previous testing, and where additional
testing is necessary.
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Section 8. CONCLUSIONS

The results of Task #1 of the NASA Wiring for Space Applications Program were shown in this report.
This task presents the operational environments for the electrical power wiring of NASA space vehicles,
and outlines the additional testing required, beyond the testing performed previously by the DOD and
NASA, for use of the insulation constructions in NASA spacecraft. The required tests will be performed
as a part of Task #2 of this program. Also, as shown in this report, there are operational considerations
such as maintenance procedures which can contribute to degradation of wiring systems. These wiring
system issues will be addressed in Task #3 of the program. The results of the testing and analysis phase
(Task #2) and the power wiring system analysis phase (Task #3) will be reported as they become
available.

Through this program, in conjunction with the efforts of other US governmental laboratories, industry,
and academia, a better understanding of arc tracking in wiring insulations will be achieved. In addition,
the top performing "hybrid" insulation constructions, such as those being addressed in this program are
expected to go through military qualification in the near future. It is anticipated that the efforts of the
NASA wiring program will be closely coordinated with the military efforts, such that the NASA and
military standards will be in agreement. The resulting database of information will help in the development
of lightweight, safe, and reliable wiring systems applying new wiring constructions which are resistant to
arc tracking, and suitable for use in aerospace applications.



SECTION 9. APPENDIX A: SUMMARY OF EXISTING TEST DATA

This program is leveraging the large quantities of valuable testing data gathered previously by DOD and
NASA programs. The related program reports and databases which were identified and used to develop a
database of existing testing information are given in references 11 - 13, 26, 53, and 56 - 59. This section
will give a description of the wiring insulation types which are used in these testing programs, and a
summary of the testing results from these programs to date.

9.1 Candidate Wirine Constructi

Table 6 describes the wire types which have been included in the existing testing for aerospace and space
applications.

Table 6. Description of Insulation Constructions [53]

Insulation
Sample Description Comments
1 MIL-W-81381/7 6 mil wall polyimide insulation, silver coated copper. Control wire, restricted use by military and NASA due to arc tracking.[12,15).
2 MIL-W-81381/11 8.6 mil wall polyimide insulation, silver coated copper. Control wire, restricted use by military and NASA due to arc tracking.[12,15).
3 MIL-W-22755/12 PTFE or TFE insulated wire, nickel coated copper. High temperature insulation currently in use on spacecraft.
4 MIL-W-22759/16 ETFE insulated wire, tin coated copper, medinm weight. Poor flammability performance in enriched oxygen eavironment [57].
s MIL-W-22759/18 ETFE insulated wire, tin coated copper, light weight. Poor flammability performance in enriched oxygen environment [57].
6 MIL-W-22759/32 XL-ETFE insulated wire, tin coated copper. Poor flammability performance in eariched oxygen eavironment [57].
7 | MILw-22759734 P’g;m?ﬂ, inealtaed wir, tin coated copper, Pooe flammability performance in cariched oxygen environment {57}.
8 | MiLwz27sou3 | XL-ETFE insulated wire, silver coated copper, Control wire for aircraft testing pesformed by Air Force [53].
normal weight.
9 MIL-W-16878 TFE insulated wire, silver coated copper, Type EE. Not in NASA approved parts list (MIL-STD-575).
10 $8Q-21652 Silicone insulated wire, nickel coated copper. Insulation tested and approved for Space Station Program [26].
TFE insulated wire, nmickel coated copper . .
11 S$8Q-21656 (also NGTW-TFE-xx). Insulation tested and approved for Space Station Program (26].
12 | MP571-0086 Polyimide insulated wire, nickel coated copper. Polyimide control wire.
ionf516 50% Min OL, s . .
13 | Filotex - TKT %MD.. Kapton v One of top hybrid" insulations from the Air Force program (53}
14 | Tensolite - TKT 200AJ919 (50% Min OL)/PTFE Tape (50% Min OL) One of top “hybrid” insulations from the Air Force program {53).
- Modificd PTFE Tape (50% OL)/TPT Tape (50% OLY e .
15 Theanatics - TKT Mod PTFE Tape (50% OL)/PTFE Di © One of top "hybrid" insulations from the Air Force program {53).
Considered promising in the Air Force program but dropped due to single
16 Gore HS-725 PTFE (50% OL)/HSCR PTFE (50% OL) probibition, characterization o be inued in NASA pi (53).
One of top *hybrid” insulations from the Air Force program , but not
17 | Nema#3-TKT 616 Kapton (45-50% OL)Extruded XL ETFE available for additional testing [53].
18 Barcel - TKT 2919 Kapton (50% OL)/Unsintered PTFE Tape, Buttwrap | Eliminated from further testing after the Air Force program [53).
19 Nema #2 - TKT PTFE Tape/616 Kapton (50% OLYVPTFE Tape Eliminated from further testing after the Air Force program {53].
20 | DuPoat (P-FP) g‘(’,"%”{f};‘” (50% OL)/New P-FP Tape Bliminated from further testing after the Air Foroe program (53}
XL ETFE Tape (50% OL)/Kapton (50% OL) L. . .
21 Brmand Rex - TKT /XL ETFE Tape (50% OL) Eliminated from further testing after the Air Force program [53].
n Champlain - TKT 2919 Kapton (50% OL)/Extroded XL ETFE Eliminated from farther testing after the Air Force program {53].
23 | TRW-PFPI TRW - PFP1 New insulation material to be tested further in the NASA program.
Abbreviations: 2919 Kapton = 0.5 mi} Fluorocasbon (PTFE), 1 mil Polyimide, 0.5 mil Fluorocarbon (PTFE)
616 Kapton = 0.1 mil Fluorocarbon (FEP), 1 mil Polyimide, 0.1 mil Fluorocarbon (FEP)
200AJ919 = 0.5 mil Fluorocarbon (PTFE), 1 mil Polyimide, 0.5 mil Fluorocarbon (PTFE)
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9.2 Department of Defense Wire Testing Programs

This section gives a summary of the data which has been gathered for wire insulation testing by DOD
programs which are also applicable to the objectives of the NASA Electrical Power Wiring Program.
These include the programs of the Air Force Wright Laboratory and the Naval Research Laboratory.

The Air Force WL program evaluated new insulation constructions for aerospace wiring applications. The
results from this work are summarized in Tables 7 - 10, where the sample numbers are as defined in

Table 7. WL Aerospace Wiring Test Results - General Properties [53].

TestTile | TestMethod | Too Conditions Samples | Conclusion/Comments
Finished Weight SAE AS4372 lg?oﬁ'fg';‘: 1,2,8,13-15,17 m_%';';?f;‘;?&i“d
Finished Diameter | SAE AS4372 Unconditioned wire 1,2,8,13-15,17 | Filotex and Thermatics performed best.
Conductor Diameter | ASTM D-3032 Unconditicned wire 128,322 | Al samples comparabie.
Wire Wall Thickness | eyt top Unconditioned wire 1281322 | Al ssmples comparable.
Workmanship A A ool Unconditioned wire 1,2,8,13-15,17 | Al samples comparable.
Examine Product S S Unconditioned wire 1.2,8,13-15,17 wﬁ‘mﬁ%ﬁﬁ:&ﬁﬁlm
Wire Sutface SAE AS 4> Unconditioned wire 1281322 | M22759 best, M81381 worst.

Table 8. WL Aerospace Wiring Test Results - Mechanical Properties [53].

Test Title Test Method T?g:gﬁ:: s/ Samples Conclusion/Comments
I e
Dynamic Cut SAE AS4373 23°C, 70°C, 150°C, 200°C Kapton performed best, Teasolite and
Through Method 703 Unaged and st 10000rs2200°C | 1281322 | Thermatics were next best performers.
| N | eS| e | St
mv— T e R |
gmﬁd S A o Uncanditioned samples EETEE N Bt it dmvbond sacaples
Crush Resistance ASTM D-3152 Unconditioned samples | 1,2,8,13-15,17 ﬁﬁ}fﬂig’p‘;ﬁ;ﬁ:@k’
o | RNE | ot | 10 017] M e
Tensile Strength P Unconditioned samples | 1,2,8,13-15,17 | MIL-W-81381, Thermatics and Tensolite are best
Wire to Wire Rub MDA Test 48 cycles/min, §70hrs | 1,2,8,13-15,17 |  All samples comparable.




Table 6, and the final statistical wire rankings are given in Table 11. The top three "hybrid" candidate
constructions when compared to MIL-W-81381 had increased flexibility, had good performance in wet
and dry arc tracking tests, and had increased temperature capabilities, but they had slightly lower
mechanical properties [53]. When compared to the MIL-W-22759 (XL-ETFE), they had superior
mechanical properties in temperatures greater than 70°C and were superior in the flammability and smoke
generation tests, but had less flexibilty [53].

Testing performed by the Naval Research Laboratory on polyimide degradation due to exposure to
humidity environments and also for susceptibility to arc tracking are reported in references 11 - 13 and are
outlined in Table 12. Again, the samples are as described in Table 6.

Table 9. WL Aerospace Wiring Test Results - Electrical Properties [53].
. Test Conditions/ .
Ti I n/ m
Test Title Test Method p eters Samples Conclusion/Comments
L SAE AS-4373 s . Filotex, Teasolite, Gore, MIL-W-81381 and
Impulse Dielectric Method 503 8kV, unconditioned wire 1,2,8,13-15, 17 m;;ﬁ“; o :-B ol comparbie.
Insulation Resistance SSA,{E&AOSJ;?S Thermal aging (1000 hrs/200°C) 1,2,8,13-22 All samples comparable.
SAE AS-4373 - .
Spark Test Method 503 1.5kV, unconditioned wire | 1,2,8,13-15,17 | All samples comparable.
Dry Dielectric Test | SAE AS4373 2.5kV, unconditioned wire | 1,2,8,13-15,17 |  All samples comparable.
Method 503
SAE AS4373 | Thermal aging (1000 hrs/200°C)
\Y/ aging
oltage Withstand Method 510 25KV, 60 Hz @ 500 V/s 1,2,8,13-22 All samples comparable.
Dielectric Constant |  SAE AS-4373 Unconditioned wire 1,2,8,13-15, 17| Tensolite, MIL-W-22759, and Filotex best
Method 501 samples
CIV/CEV 4 . .
A% DO S A S | 400Hz&DC,49 & 758 Torr | 1,2,8,13-15,17 | Teasolite best, Themmatics worst.
i SAE AS-4373 .
Surface Resistance Mothod 506 96 hrs/95% RH/25°C 1,2,8,13-15,17 | All samples comparable.
Time/Curreat to SAE AS-4373 .
Smcke Method 507 I0A+5A/30s 1,2,8,13-15,17| All samples comparable.
Wire Fusing T SAE AS-4373 2.5 times free air rated current )
Fusing Time od 511 (AWG #22 -L,_, = 45 A) 1,2,8,13-15,17 | Tensolite and MIL-W-81381 performed best.
Arc Registance SAE AS-4373 Bundled wires, on showed propagation, most
Dry Method 301 28VDC 1281322 | iher samples e st aled. voltage test.
BSI Dry Arc BSI90/76828 _ Bundled wires, Thermatics, Tensolite, and
RmDry BSI 90/80606 28 VDC, 115 V/400 Hz L28,13-15,17 | 0 = best wire sampie




Table 10.

WL Aerospace Wiring Test Results - Environmental Properties [53].

. Test Conditions/ :
Test Title Test Method
Parameters Samples Conclusion/Comments
Aging Stability ShAdEahAoSd-?l? 230°C for 96 hus 1,2,8,13-15,17| All samples comparable.
SAE AS-4373 ; ;
Thermal Inde: 220 - 280°C agi d R - Filotex, Tensolite, Thermatics and
X Method 804 aging to bend failure 1,2, 8, 13-15,17 W-81381 are ..
SAE AS-4373 . . : Filotex, Tensolite, MIL-W-22759 and
Thermal Shock - . otex, ,
e Mothod 805 55°C 0 200°C, 4/30 min cycles | 1,2,8,13-15,17 | Ui 81287 ure comparable.
. SAE AS4373 Thermatics, Filotex, Teasolite and
Thermal R s .
Aging Method 807 1000 brs at 200°C L2.8 131517} \m W.22759 were similar.
Cold Bend SAEASA37S | 65°Cfor 4 hes, 2 pon wraping | 1,2,8,13-15,17 | Filltex and Teasolite were best samples.
: SAE AS-4373 L MIL-W-81381, Tensolite and Filotex
Flammability Method 801 Ambient air 1238,13-22 arc comparable.
. . Naval Engineeri i g
Toxicity - Buming asmmgng 1 10 2 gram bum mass 1281322 ﬁm Thermatics, and MIL-W-22759
Smoke Quantity SAE AS-4373 . } All other samples performed similady
Method 803 Radiant heat and flame exposure | 1,2,8,13-15,17 t than MIL-W-22759.
Wet ArcTracking | SAEASEY Unconditioned wire 1,2,8,13-15,17 | Filotex, Teaslite and Thermatics all comparable.
i ; SAE AS-4373 .
Finid Immersion Method €03 Acrospace flnids 1281322 | All samples are comparable.
Forced Hydrolysis SAE AS-4373 5% salt water, 70°C, 720hrs; | o ¢ 135 17| Temsolite and MIL-W-22759 were the
Method 602 Unaged and at 1000 hrs/200°C | 7”7 ’ best perfformers.
Humidi SAE AS-4373 . MIL-W-22759 was best, Filotex and
Pl ty Method 603 70°C, 95% RH, 360 hrs 1,2,8,13-15,17 | o o best
1ok SAE AS-4373 :
Wicking Mothod 607 Dye solution 1,2,8,13-15,17 | All samples comparable.
i SAE AS-4373 .
Weight Loss Method 604 36 Tor, 200°C, 384 hrs 1,2,8,13-15,17 | Tensolite performed best.
; SAE AS-4373 . .
R cathering Mothod 606 120/8 hr UV cycles, 40-70°C | 1,2,8,13-15,17 | All insulations comparable.
Table 11. WL Aerospace Wiring Test Program Final Statistical Test Results [53].
Wire Rank Screen Test Screen Test Full Performance Full Performance
Unweighted Aircraft Weighted Unweighted Aircraft Weighted
1 Filotex Filotex Tensolite Filotex
2 Thermatics Thermatics Filotex Tensolite
3 Gore* NEMA #3 MIL-W-81381 MIL-W-81381
4 NEMA #3 Gore* Thermatics Thermatics
5 MIL-W-81381 MIL-W-81381 NEMA #3 NEMA #3
6 Tensolite Tensolite MIL-W-22759 MIL-W-22759
7 Barcel Champlain - -—
8 Champlain Barcel — -
9 MIL-W-22759 NEMA#2 -— —
10 NEMA #2 MIL-W-22759 -— —
11 DuPont Brand Rex -— -
12 Brand Rex DuPont -— -—

* The Gore construction was eliminated after screening tests due to Air Force sole source restrictions.
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Table 12. NRL Aerospace Wiring Test Results [11-13].

Test Conditions/ .
Test Title Test Method Parameters Samples Conclusion/Comments
Wet Arc Tracking ASTM D-2303 1% salt water solution 24,7 g? polymnde[ i;s]uhﬁon exhibited arc tracking
Hydrolysis ASTMD-3032 | 60°Ct090°C, 70% - 100% RH 2 plmdity m polyimide

9.3 NASA Wire Testing Programs

Testing has been performed in other NASA programs which are applicable to this program. Two specific
programs, one which addresses arc tracking for the Space Station Freedom program and another which
considers the flammability of ETFE and XL-ETFE constructions in enriched oxygen environments, are
discussed in references 26 and 57 and summarized in Table 13, with the samples as given in Table 6.

Table 13. NASA Wiring Test Results [26,57].

. Test Conditions/ .
Test Title Test Method Parameters Samples Conclusion/Comments
. JSC Test Method ; . The $8Q-21656, SSQ-21652 and MIL-W-
Electrical Wire NHB 8060.1C . Use of these insulations are not a safe choice for
Flammability Test #4 >25% O, conceatration 4-7 these enriched oxygen envirronments {57).

The NASA MSFC Materials and Processes Laboratory Technical Information System - MAPTIS [56]
contains the data from testing performed according to the NASA test specifications for "Flammability,
Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments
that Support Combustion,” NHB 8060.1C. This database contains information on many tests, those
which are directly related to this program are summarized in Table 14. Again the samples are as described
in Table 6, with the exception of sample A, which is an unspecified MIL-W-81381 construction (i.e. no
/xx definition), and B is an unspecified MIL-W-22759 construction.

9.4 Summary of Tests Performed vs. Wiring Constructions

Table 15 presents for the wiring constructions described in Table 6, a summary of the testing status for the
numerous tests identified as important for NASA wiring systems. The table outlines the tests which
already have been performed, those to be performed in this program. those not necessary, and those which
are a low priority for tests which are not scheduled to be tested at this time, but may have research value.



Table 14. NASA MAPTIS Test Data [56].

. Test Conditions/ .
Test Title Test Method Par:m eters Samples Conclusion/Comments
20.9% O,, 14.7 psi 56
25.9% O,, 14.3 psi 2 Various sample types have passed the
Upward Flame NHBR060.1C 30.3% O, 9.3 psi 2 30% O, eaviroment. Others have not
Propagation et 30.3% Oy, 20.4 psi AB passed or not tested.
100% O,, 14.7 psi AB
. 24% Oy, 14.5 psi A .
Flah Poin of NHBS060.1C iy %%11 43 psi AB This test for information only, 0o futare tests
qui Test #3 30% Oy, 10 psi 5 planned in this area.
20.9% O,, 14.7 psi 5
NHBSOSIC 255% 0y 14355 ‘
. . 30% O, 10.2 psi Various sample types have passed the
Electrical Wire X
Flammability ) 30% O, environment. Others have not
20.9% Oy, 14.7 psi 56 passed or not tested.
NHB8060.1C 25.9% O,, 14.3 psi 23
Test #4B 30% Oy, 10psi AB,12
100% O,, 30 psi AB
Odor Assessment NHBB8060.1C 26% O, 12.3 psi, 120°F, 72 hrs A Polyimide sample passed test.
Test #6
Offgassed NHB8060.1C . Polyimide, PTFE, and XL-ETFE samples
Prodacts et B 20.9% O,, 14.5 psi, 120°F, 72 hrs 236 passed test
Mechanical Impact 100% GOX, 50 psi, 480°F 211,16
for Materials in NI'%S.;OE?&IC 100% GOX, 14.7 psi, 75°F AB Various samples have passed test.
LOX and GOX 100% LOX, 14.7 psi, -297°F AB
Outgassing in ASTME- s . Polyimide and silicone robber samples have







Table 15. Tests Performed vs. Wiring Constructions Matrix.
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DuPont (P-FP)
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Table 15. Tests Performed vs. Wiring Constructions Matrix (Cont'd).
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